
AMIE: Association Rule Mining under Incomplete Evidence
in Ontological Knowledge Bases

Luis Galárraga1, Christina Teflioudi1, Katja Hose2, Fabian M. Suchanek1

1Max-Planck Institute for Informatics, Saarbrücken, Germany
2Aalborg University, Aalborg, Denmark

1{lgalarra, chteflio, suchanek}@mpi-inf.mpg.de, 2{khose}@cs.aau.dk

ABSTRACT
Recent advances in information extraction have led to huge
knowledge bases (KBs), which capture knowledge in a ma-
chine-readable format. Inductive Logic Programming (ILP)
can be used to mine logical rules from the KB. These rules
can help deduce and add missing knowledge to the KB.
While ILP is a mature field, mining logical rules from KBs is
different in two aspects: First, current rule mining systems
are easily overwhelmed by the amount of data (state-of-the
art systems cannot even run on today’s KBs). Second, ILP
usually requires counterexamples. KBs, however, implement
the open world assumption (OWA), meaning that absent
data cannot be used as counterexamples. In this paper, we
develop a rule mining model that is explicitly tailored to
support the OWA scenario. It is inspired by association rule
mining and introduces a novel measure for confidence. Our
extensive experiments show that our approach outperforms
state-of-the-art approaches in terms of precision and cover-
age. Furthermore, our system, AMIE, mines rules orders of
magnitude faster than state-of-the-art approaches.

Categories and Subject Descriptors
H2.8 [Information Systems]: Database Applications

General Terms
Algorithms

Keywords
Rule Mining, Inductive Logic Programming, ILP

1. INTRODUCTION
In recent years, we have experienced the rise of large

knowledge bases (KBs), such as Cyc [23], YAGO [35], DB-
pedia [5], and Freebase1. These KBs provide information
about a great variety of entities, such as people, countries,
rivers, cities, universities, movies, animals, etc. Moreover,
KBs also contain facts relating these entities, e.g., who was
born where, which actor acted in which movie, or which city
is located in which country. Today’s KBs contain millions
of entities and hundreds of millions of facts.

Yet, even these large KBs are not complete. Some of
them are extracted from natural language resources that

1http://freebase.com

inevitably exhibit gaps. Others are created and extended
manually. Making these KBs complete requires great effort
to extract facts, check them for correctness, and add them
to the KB. However, KBs themselves often already contain
enough information to derive and add new facts. If, for in-
stance, a KB contains the fact that a child has a mother,
then the mother’s husband is most likely the father:

motherOf (m, c) ∧ marriedTo(m, f)⇒ fatherOf (f, c)

As for any rule, there can be exceptions, but in the vast
majority of cases, the rule will hold. Finding such rules
can serve four purposes: First, by applying such rules on
the data, new facts can be derived that make the KB more
complete. Second, such rules can identify potential errors
in the knowledge base. If, for instance, the KB contains the
statement that a totally unrelated person is the father of a
child, then maybe this statement is wrong. Third, the rules
can be used for reasoning. Many reasoning approaches rely
on other parties to provide rules (e.g., [27, 31]). Last, rules
describing general regularities can help us understand the
data better. We can, e.g., find out that countries often trade
with countries speaking the same language, that marriage is
a symmetric relationship, that musicians who influence each
other often play the same instrument, and so on.

The goal of this paper is to mine such rules from KBs.
We focus on RDF-style KBs in the spirit of the Seman-
tic Web, such as YAGO [35], Freebase1, and DBpedia [5].
These KBs provide binary relationships in the form of RDF
triples2. Since RDF has only positive inference rules, these
KBs contain only positive statements and no negations. Fur-
thermore, they operate under the Open World Assumption
(OWA). Under the OWA, a statement that is not contained
in the KB is not necessarily false; it is just unknown. This
is a crucial difference to many standard database settings
that operate under the Closed World Assumption (CWA).
Consider an example KB that does not contain the infor-
mation that a particular person is married. Under CWA we
can conclude that the person is not married. Under OWA,
however, the person could be either married or single.

Mining rules from a given dataset is a problem that has
a long history. It has been studied in the context of asso-
ciation rule mining and inductive logic programming (ILP).
Association rule mining [3] is well-known in the context of
sales databases. It can find rules such as “If a client bought
beer and wine, then he also bought aspirin”. The confidence
of such a rule is the ratio of cases where beer and wine was
actually bought together with aspirin. Association rule min-
ing inherently implements a closed world assumption: A rule

2http://www.w3.org/TR/rdf-primer/

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink
to the author’s site if the Material is used in electronic media.
WWW 2013, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2035-1/13/05.

413

http://freebase.com
http://www.w3.org/TR/rdf-primer/

that predicts new items that are not in the database has a
low confidence. It cannot be used to (and is not intended to
be used to) add new items to the database.

ILP approaches deduce logical rules from ground facts.
Yet, current ILP systems cannot be applied to semantic
KBs for two reasons: First, they usually require negative
statements as counter-examples. Semantic KBs, however,
usually do not contain negative statements. The semantics
of RDF are too weak to deduce negative evidence from the
facts in a KB.3 Because of the OWA, absent statements can-
not serve as counter-evidence either. Second, today’s ILP
systems are slow and cannot handle the huge amount of
data that KBs provide. In our experiments, we ran state-of-
the-art approaches on YAGO2 for a couple of days without
obtaining any results.

In this paper, we propose a rule mining system that is
inherently designed to work under the OWA, and efficient
enough to handle the size of today’s KBs. More precisely,
our contributions are as follows:
(1) A method to simulate negative examples for positive KBs
(the Partial Completeness Assumption)
(2) An algorithm for the efficient mining of rules.
(3) A system, AMIE, that mines rules on millions of facts
in a few minutes without the need for parameter tuning or
expert input.
The rest of this paper is structured as follows. Section 2 dis-
cusses related work and Section 3 introduces preliminaries.
Sections 4 and 5 are the main part of the paper, present-
ing our mining model and its implementation. Section 6
presents our experiments before Section 7 concludes.

2. RELATED WORK
We aim to mine rules of the form

motherOf (m, c) ∧ marriedTo(m, f)⇒ fatherOf (f, c)

Technically, these are Horn rules on binary predicates. Rule
mining has been an area of active research for the past couple
of years. Some approaches mine association rules, some mine
logical rules, others mine a schema for the KB, and again
others use rule mining for application purposes.
Association Rule Mining. Association rules [3] are mined
on a list of transactions. A transaction is a set of items. For
example, in the context of sales analysis, a transaction is the
set of products bought together by a customer in a specific
event. The mined rules are of the form {ElvisCD, Elvis-
Book} ⇒ ElvisCostume, meaning that people who bought
an Elvis CD and an Elvis book usually also bought an Elvis
costume. However, these are not the kind of rules that we
aim to mine in this paper. We aim to mine Horn rules.

One problem for association rule mining is that for some
applications the standard measurements for support and
confidence do not produce good results. [36] discusses a num-
ber of alternatives to measure the interestingness of a rule in
general. Our approach is inspired by this work and we also
make use of a language bias [2] to reduce the search space.
Logical Rule Mining. Sherlock [32] is an unsupervised
ILP method to learn first-order Horn clauses from a set of
extracted facts for a given target relation. It uses probabilis-
tic graphical models (PGMs) to infer new facts. It tackles
the noise of the extracted facts by extensive filtering in a

3RDF has only positive rules and no disjointness constraints
or similar concepts.

preprocessing step and by penalizing longer rules in the in-
ference part. For mining the rules, Sherlock uses 2 heuristics:
statistical significance and statistical relevance.

The WARMR system [11,12] mines patterns in databases
that correspond to conjunctive queries. It uses a declara-
tive language bias to reduce the search space. An extension
of the system, WARMER [13], modified the approach to
support a broader range of conjunctive queries and increase
efficiency of search space exploration.

ALEPH4 is a general purpose ILP system, which imple-
ments Muggleton’s Inverse Entailment algorithm [25] in Pro-
log. It employs a variety of evaluation functions for the rules,
and a variety of search strategies.

These approaches are not tailored to deal with large KBs
under the Open World Assumption. We compare our sys-
tem, AMIE, to WARMR and ALEPH, which are the only
ones available for download. Our experiments do not only
show that these systems mine less sensible rules than AMIE,
but also that it takes them much longer to do so.
Expert Rule Mining. Another rule mining approach over
RDF data [28] was proposed to discover causal relations in
RDF-based medical data. It requires a domain expert who
defines targets and contexts of the mining process, so that
the correct transactions are generated. Our approach, in
contrast, does not rely on the user to define any context or
target. It works out-of-the-box.
Generating Schemas. In this paper, we aim to generate
Horn rules on a KB. Other approaches use rule mining to
generate the schema or taxonomy of a KB. [7] applies clus-
tering techniques based on context vectors and formal con-
cept analysis to construct taxonomies. Other approaches
use clustering [21] and ILP-based approaches [9]. For the
friend-of-a-friend network on the Semantic Web, [14] ap-
plies clustering to identify classes of people and ILP to learn
descriptions of these groups. Another example of an ILP-
based approach is the DL-Learner [19], which has success-
fully been applied [15] to generate OWL class expressions
from YAGO [35]. As an alternative to ILP techniques, [37]
propose a statistical method that does not require negative
examples. In contrast to our approach, these techniques
aim at generating a schema for a given RDF repository, not
logical rules in general.
Learning Rules From Hybrid Sources. [8] proposes to
learn association rules from hybrid sources (RDBMS and
Ontologies) under the OWA. For this purpose, the defini-
tion of frequency (and thus of support and confidence) is
changed so that unknown statements contribute with half
of the weight of the true statements. Another approach [20]
makes use of an ontology and a constraint Datalog program.
The goal is to learn association rules at different levels of
granularity w.r.t. the type hierarchy of the ontology. While
these approaches focus more on the benefits of combining
hybrid sources, our approach focuses on pure RDFS KBs.
Further Applications of Rule Mining. [17] proposes an
algorithm for frequent pattern mining in KBs that use DL-
safe rules. Such KBs can be transformed into a disjunctive
Datalog program, which allows seeing patterns as queries.
This approach does not mine the Horn rules that we aim at.

Some approaches use rule mining for ontology merging
and alignment [10, 24, 30]. The AROMA system [10], e.g.,

4http://www.cs.ox.ac.uk/activities/machlearn/
Aleph/aleph_toc.html

414

http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph_toc.html
http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph_toc.html

uses association rules on extracted terms to find subsump-
tion relations between classes and properties of different on-
tologies. Again, these systems do not mine the kind of rules
we are interested in.

In [1] association rules and frequency analysis are used to
identify and classify common misusage patterns for relations
in DBpedia. In contrast to our work, this approach does not
mine logical rules, but association rules on the co-occurrence
of values. Since RDF data can be seen as a graph, mining
frequent subtrees [6, 18] is another related field of research.
However, as the URIs of resources in knowledge bases are
unique, these techniques are limited to mining frequent com-
binations of classes.

Several approaches, such as Markov Logic [31] or URDF
[27] use Horn rules to perform reasoning. These approaches
can be consumers of the rules we mine with AMIE.

3. PRELIMINARIES
RDF KBs. In this paper, we focus on RDF knowledge
bases5. An RDF KB can be considered a set of facts, where
each fact is a triple of the form 〈x, r, y〉 with x denoting the
subject, r the relation (or predicate), and y the object of the
fact. There are several equivalent alternative representations
of facts; in this paper we use a logical notation and represent
a fact as r(x, y). For example, we write father(Elvis,Lisa).

The facts of an RDF KB can usually be divided into an A-
Box and a T-Box. While the A-Box contains instance data,
the T-Box is the subset of facts that define classes, domains,
ranges for predicates, and the class hierarchy. Although T-
Box information can also be used by our mining approach,
we are mainly concerned with the A-Box, i.e., the set of facts
relating one particular entity to another.

In the following, we assume a given KB K as input. Let
R = πrelation(K) denote the set of relations contained in K
and E = πsubject(K) ∪ πobject(K) the set of entities.
Functions. A function is a relation r that has at most one
object for every subject, i.e., ∀x : |{y : r(x, y)}| ≤ 1. A
relation is an inverse function if each of its objects has at
most one subject. Since RDF KBs are usually noisy, even
relations that should be functions (such as hasBirthdate)
may exhibit two objects for the same subject. Therefore,
we use the notion of functionality [33]. The functionality of
a relation r is a value between 0 and 1, that is 1 if r is a
function:

fun(r) :=
#x : ∃y : r(x, y)

#(x, y) : r(x, y)

with #x : X as an abbreviation for |{x : X ∈ K}|. The
inverse functionality is defined accordingly as ifun(r) :=
fun(r−1). Without loss of generality, we assume that ∀r ∈
R : fun(r) ≥ ifun(r) (FUN-Property). If that is not
the case for a relation r, we can replace all facts r(x, y)
with the inverse relation, r−(y, x), which entails fun(r−) ≥
ifun(r−). For example, if the KB contains the inverse
functional relation directed(person,movie), we can create the
functional relation isDirectedBy(movie,person) and use only
that one in the rule mining process. Manual inspection
shows, however, that relations in semantic KBs tend to be
more functional than inverse functional. Intuitively, this al-
lows us to consider a fact r(x, y) as a fact about x.

5http://www.w3.org/TR/rdf-primer/

Rules. An atom is a fact that can have variables at the
subject and/or object position. A (Horn) rule consists of a
head and a body, where the head is a single atom and the
body is a set of atoms. We denote a rule with head r(x, y)
and body {B1, ..., Bn} by an implication

B1 ∧B2 ∧ ... ∧Bn ⇒ r(x, y)

which we abbreviate as ~B ⇒ r(x, y). One example of such
a rule is

hasChild(p, c) ∧ isCitizenOf (p, s)⇒ isCitizenOf (c, s)

An instantiation of a rule is a copy of the rule, where all
variables have been substituted by entities. A prediction of
a rule is the head atom of an instantiated rule if all body
atoms of the instantiated rule appear in the KB. For ex-
ample, the above rule can predict isCitizenOf(Lisa,USA) if
the KB knows a parent of Lisa (hasChild(Elvis,Lisa)) who
is American (isCitizenOf(Elvis,USA)).
Language Bias. As most ILP systems, AMIE uses a lan-
guage bias to restrict the search space. We say that two
atoms in a rule are connected if they share a variable or an
entity. A rule is connected if every atom is connected tran-
sitively to every other atom of the rule. AMIE mines only
connected rules, i.e., it avoids constructing rules that con-
tain unrelated atoms. We say that a rule is closed if every
variable in the rule appears at least twice. Such rules do not
predict merely the existence of a fact (e.g. diedIn(x, y) ⇒
∃z : wasBornIn(x, z)), but also concrete arguments for it
(e.g. diedIn(x, y) ⇒ wasBornIn(x, y)). AMIE mines only
closed rules. We allow recursive rules that contain the head
relation in the body.
Parallels to Association Rule Mining. Association Rule
Mining discovers correlations in shopping transactions. Thus,
association rules are different in nature from the Horn rules
we aim at. Still, we can show some similarities between
the two approaches. Let us define one transaction for every
set of n entities that are connected in the KB. For exam-
ple, in Figure 1, we will define a transaction for the enti-
ties Elvis, Lisa and Priscilla, because they are connected
through the facts mother(Priscilla,Lisa), father(Elvis,Lisa),
marr(Elvis, Priscilla). We label the transaction with the
set of these entities. Each atom r(xi, xj) on variables in-
dexed by 1 ≤ i, j ≤ n corresponds to an item. A transaction
with label 〈C1, . . . , Cn〉 contains an item r(xi, xj) if r(Ci, Cj)
is in the KB. For example, the transaction 〈Elvis, Lisa,
Priscilla〉 contains the items {mother(x3,x2), father(x1,x2),
marr(x1,x3)}, since the ground atoms mother(Priscilla,Lisa),
father(Elvis,Lisa) and marr(Elvis, Priscilla) are in the KB.
In this representation, association rules are Horn rules. In
the example, we can mine the association rule

{mother(x3, x2),marr(x1, x3)} ⇒ {father(x1, x2)}

which corresponds to the Horn rule

mother(x3, x2) ∧marr(x1, x3)⇒ father(x1, x2)

Transaction Label Transaction Items
〈Elvis,Lisa,Priscilla〉 {mother(x3,x2),father(x1,x2),marr(x1,x3)}
〈Barack,Mali,Mich.〉 {mother(x3,x2),father(x1,x2),marr(x1,x3)}
〈François,Flora,Ségo〉 {mother(x3,x2),father(x1,x2)}

Figure 1: Mining Rules with 3 Variables

Constructing such a table with all possible combinations
of entities is practically not very viable. Apart from that,

415

http://www.w3.org/TR/rdf-primer/

it faces a number of design issues (e.g., how to deal with
transactions that contain the same entities in different or-
derings). Therefore, association rule mining cannot be used
directly to mine Horn rules. However, we take inspiration
from the parallels between the two types of mining for our
system, AMIE.

4. MINING MODEL
Model. Let us consider a given Horn rule ~B ⇒ r(x, y). Let
us look at all facts with relation r (Figure 2). We distinguish
4 types of facts: True facts that are known to the KB (KB-
true), true facts that are unknown to the KB (NEWtrue),
facts that are known to be false in the KB (KBfalse), and
facts that are false but unknown to the KB (NEWfalse).
The rule will make certain predictions (blue circle). These
predictions can be known to be true (A), known to be false
(C), or unknown (B and D). When they are unknown to the
KB, they can still be true (B) or false (D) with respect to
the real world.

PredictionsA B

C D

KBtrue

KBfalse

NEWtrue

NEWfalse

true

false

known to KB unknown to KB

Figure 2: Prediction under Incompleteness

Goal. Our goal is to find rules that make true predictions
that go beyond the current KB. In the figure, we wish maxi-
mize the area B, and to minimize the area D. There are two
obvious challenges in our context: First, the areas NEWtrue
and NEWfalse are unknown. So if we wish to maximize B
at the expense of D, we are operating in an area outside our
KB. We would want to use the areas KBtrue and KBfalse
to estimate the unknown area. This, however, leads to the
second challenge: Semantic KBs do not contain negative
evidence. Thus, the area KBfalse is empty. We will now
present different measures that address these challenges.
Support. The support of a rule quantifies the number of
correct predictions, i.e., the size of A. There are several ways
to define the support: It can be the number of instantiations
of the rule that appear in the KB. This is what our analogy
to association rule mining [3] suggests (Section 3). This
measure, however, is not monotonic if we add atoms to the
body. Consider, for example, the rule

marriedTo(x, y)⇒ marriedTo(y, x)

If we add hasGender(x,male) to the body, the number of
instantiations that are in the KB decreases. If we add an
atom with a fresh variable, e.g., hasFriend(x,z), to the body,
the number of instantiations increases for every friend of x.
This is true even if we add another atom with z to make the
rule closed. Alternatively, we can count the number of facts
in one particular body atom. This definition, however, de-
pends on the choice of the body atom, so that the same rule
can have different supports. We can also count the number
of facts of the head atom. This measure decreases monoton-

ically if more body atoms are added and avoids equivalent
rules with different support values. With this in mind, we
define the support of a rule as the number of distinct pairs
of subjects and objects in the head of all instantiations that
appear in the KB:

supp(~B ⇒ r(x, y)) := #(x, y) : ∃z1, ..., zm : ~B ∧ r(x, y)

where z1, ..., zm are the variables of the rule apart from x
and y.
Head Coverage. Support is an absolute number. This
means that a user who thresholds on support has to know
the absolute size of the KB to give meaningful values. To
avoid this, we also define a proportional version of support.
A naive way would be to use the absolute number of support,
as defined in the previous paragraph, over the size of the KB.
In this case, however, relations that do not have many facts
(either because of the incompleteness of the KB or because of
their nature), will not be considered in the head of rules, i.e.
we will not learn rules predicting such relations. Therefore,
we propose to use the notion of head coverage. This is the
proportion of pairs from the head relation that are covered
by the predictions of the rule

hc(~B ⇒ r(x, y)) :=
supp(~B ⇒ r(x, y))

#(x′, y′) : r(x′, y′)

Negative Examples. The central challenge of our setting
is to provide counter-examples for the rule mining. These
can take the role of KBfalse, so that we can estimate the ar-
eas NEWtrue and NEWfalse. There are several approaches
to this problem: The standard confidence, the standard
positive-only learning evaluation score of ILP, and our new
partial completeness assumption.
Standard Confidence. The standard confidence measure
takes all facts that are not in the KB (i.e., NEWtrue and
NEWfalse) as negative evidence. Thus, the standard confi-
dence of a rule is the ratio of its predictions that are in the
KB, i.e., the share of A in the set of predictions:

conf(~B ⇒ r(x, y)) :=
supp(~B ⇒ r(x, y))

#(x, y) : ∃z1, ..., zm : ~B

The standard confidence is blind to the distinction between
“false” and “unknown”. Thus, it implements a closed world
setting. It mainly describes the known data and penalizes
rules that make a large number of predictions in the un-
known region. We, in contrast, aim to maximize the number
of true predictions that go beyond the current knowledge.
We do not want to describe data, but to predict data.
Positive-Only Learning. For cases where the KB does
not contain negative examples, Muggleton has developed a
positive-only learning evaluation score for ILP [26], [22]. It
takes random facts as negative evidence:

Score = log(P)− log R+ 1

Rsize+ 2
− L

P

Here, P is the number of known true facts covered (A in
the figure), R is the number of randoms covered, Rsize is
the total number of randoms and L is the number of atoms
in the hypothesis. The intuition is that a good rule should
cover many positive examples, and few or no randomly gen-
erated examples. This ensures that the rule is not overly
general. Furthermore, the rule should use as few atoms as
possible, and thus achieve a high compression. This measure
is implemented (among others) in the ALEPH system.

416

Partial Completeness. We propose to generate negative
evidence by the partial completeness assumption (PCA).
This is the assumption that if r(x, y) ∈ KBtrue for some
x, y, then

∀y′ : r(x, y′) ∈ KBtrue ∪NEWtrue ⇒ r(x, y′) ∈ KBtrue

In other words, we assume that if the database knows some
r-attribute of x, then it knows all r-attributes of x. This
assumption is certainly true for functional relations r, such
as birth dates, capitals, etc. Thanks to the FUN-Property
(see Section 4), it is also true for inverse-functional relations,
such as owns, created, etc. The assumption is also true in the
vast majority of cases for relations that are not functional,
but that have a high functionality. Even for other relations,
the PCA is still reasonable for knowledge bases that have
been extracted from a single source (such as DBpedia and
YAGO). These usually contain either all r-values or none for
a given entity.
PCA Confidence. Under the PCA, we normalize the con-
fidence not by the entire set of facts, but by the set of facts
of which we know that they are true, together with the facts
of which we assume that they are false. If the head atom
of the rule is r(x, y), then this set is just the set of facts
{r(x, y′) : r(x, y′) ∈ K}. Thanks to the FUN-Property, the
PCA is always applied to the first argument of the head
atom:

pcaconf(~B ⇒ r(x, y)) :=
supp(~B ⇒ r(x, y))

#(x, y) : ∃z1, ..., zm, y′ : ~B ∧ r(x, y′)

We show in our experiments that the PCA confidence iden-
tifies much more productive rules than the other measures.

5. AMIE
After having outlined the basic definitions and the mining

model in Sections 3 and 4, we now outline the core algorithm
of our framework and its implementation.

5.1 Algorithm
Goal. Our goal is to mine rules of the form defined in Sec-
tion 3. One of the main problems of any mining approach
is to find an efficient way to explore the search space. The
naive algorithm of enumerating all possible rules is infeasi-
ble for large KBs. Hence, we explore the search space by
iteratively extending rules by mining operators.
Mining Operators. We see a rule as a sequence of atoms.
The first atom is the head atom and the others are the body
atoms. In the process of traversing the search space, we can
extend a rule by using one of the following operators:

1. Add Dangling Atom (OD)
This operator adds a new atom to a rule. The new
atom uses a fresh variable for one of its two arguments.
The other argument (variable or entity) is shared with
the rule, i.e., it occurs in some other atom of the rule.

2. Add Instantiated Atom (OI)
This operator adds a new atom to a rule that uses an
entity for one argument and shares the other argument
(variable or entity) with the rule.

3. Add Closing Atom (OC)
This operator adds a new atom to a rule so that both
of its arguments are shared with the rule.

By repeated application of these operators, we can generate
the entire space of rules as defined in Section 3. The oper-
ators generate even more rules than those we are interested
in, because they also produce rules that are not closed. An
alternative set of operators could consist of OD and an op-
erator for instantiation. But these operators would not be
monotonic, in the sense that an atom generated by one oper-
ator can be modified in the next step by the other operator.
Therefore, we chose the above 3 operators as a canonic set.
Algorithm. We mine rules with Algorithm 1. The algo-
rithm maintains a queue of rules, which initially just con-
tains the empty rule. The algorithm iteratively dequeues a
rule from the queue. If the rule is closed (see Section 3),
the rule is output, otherwise, it is not. Then, the algorithm
applies all operators to the rule and adds the resulting rules
to the queue (unless they are pruned out, s.b.). This pro-
cess is repeated until the queue is empty. We parallelize this
process by maintaining a centralized queue, from which the
threads dequeue and enqueue. We do not feed predictions of
the rules back into the KB. All measures (such as confidence
and support) are always computed on the original KB.

Algorithm 1 Rule Mining

1: function AMIE(KB K)
2: q = 〈[]〉
3: Execute in parallel:
4: while ¬q.isEmpty() do
5: r = q.dequeue()
6: if r is closed ∧ r is not pruned for output then
7: Output r
8: end if
9: for all operators o do

10: for all rules r′ ∈ o(r) do
11: if r′ is not pruned then
12: q.enqueue(r′)
13: end if
14: end for
15: end for
16: end while
17: end function

Pruning. If executed naively, our algorithm will have pro-
hibitively high run-times. The instantiation operator OI , in
particular, generates atoms in the order of |R| × |E|. We
first observe that we are usually not interested in rules that
cover only very few facts of the head relation. Rules that
cover, for example, less than 1% of the facts of the head
relation can safely assumed to be marginal. Therefore, we
set θ = 0.01 as a lower bound for the head coverage. We
observe that head coverage decreases monotonically as we
add more atoms. This allows us to safely discard any rule
that trespasses the threshold (Lines 11 and 12).

The monotonicity of head coverage gives us another op-
portunity to prune: If a rule B1 ∧ ...∧Bn ∧Bn+1 ⇒ H does
not have larger confidence than the rule B1 ∧ ... ∧Bn ⇒ H,
then we do not output the longer rule. This is because both
the confidence and the head coverage of the longer rule are
necessarily dominated by the shorter rule. This way, we can
reduce the number of produced rules (Lines 6 and 7).

Last, we never enqueue a rule that is already in the queue.
It is expensive to check two rules for equality. However, it
is easy to compute measures such as head coverage, confi-
dence, and PCA confidence for each rule. Two rules can

417

only be equal if they have the same values for these mea-
sures. This restricts the rules that have to be checked. If
a rule is duplicate, we do not enqueue it (Lines 11 and 12).
We can be sure that any potential duplicates will still be in
the queue. This is because the length of the rules increases
monotonically: When we dequeue a rule with n atoms, no
rule with n+ 1 atoms has ever been dequeued. Thus, when
we apply the operators to the rule with n atoms, and gener-
ate a rule with n+ 1 atoms, any potential duplicate of that
new rule must be in the queue.
Projection Queries. No matter what operator is applied
in particular, the algorithm needs to choose a relation for
the new atom that is added to the rule. In addition, the
instantiation operator OI also allows the choice of an entity.
In order to select only relations and entities that will fulfill
the head coverage constraint, we rely on the KB to answer
projection queries. These are queries of the form

SELECT ?x WHERE H ∧B1 ∧ ... ∧Bn

HAVING COUNT(H)≥ k

where B1, ..., Bn are atoms and k is a natural number. H is
the projection atom on which we project. ?x is the selection
variable. It is a variable that appears in one or more atoms
at the position of one of the arguments or at the position
of the relation (as it is common in SPARQL6). Such queries
select an entity or relation x such that the result of the query
H ∧ B1 ∧ ... ∧ Bn on the KB contains more than k distinct
query answers for H.
Using Projection Queries. Projection queries allow us
to select the relationship for the operators OD, OI , and OC
in such a way that the head coverage of the resulting rule is
above θ. This works by firing a projection query of the form

SELECT ?r WHERE H ∧B1 ∧ ... ∧Bn∧ ?r(X,Y)
HAVING COUNT(H)≥ k

where X and Y are variables or constants, depending on the
type of atoms that the operator generates. The results for
?r will be the relations that, once bound in the query, ensure
that the support of the rule B1 ∧ ... ∧Bn∧?r(X,Y)⇒ H is
greater than k. If we choose k equal to θ times the num-
ber of facts of the relation of H, then the head coverage of
the resulting rules will be greater than θ – which is what
we want. For the instantiation operator OI , we first fire
a projection query to select relations, and then fire projec-
tion queries to retrieve entities. This way, projection queries
allow us to choose the relationships and entities for the op-
erators in such a way that the head coverage for the new
rules is guaranteed to be above θ. Next, we discuss how to
implement projection queries efficiently.

5.2 Implementation
SQL and SPARQL. Projection queries are essential for
the efficiency of our system. Yet, standard database imple-
mentations do not provide special support for these types
of queries. Assuming that the KB K is stored as a three-
column table (i.e., each fact is a row with three elements),
the projection query template in SQL would be:

SELECT ?x
FROM K AS H, K AS B1, . . .Bn

WHERE H.xi = Bj .xm, . . .

6http://www.w3.org/TR/rdf-sparql-query/

GROUP BY(H.x1, H.xr, H.x2)
HAVING COUNT(*) ≥ k

where ?x is replaced with a reference to any of the intro-
duced columns. The WHERE clause lists all variables that
are shared between any two atoms in the rule, i.e., all join
columns and conditions between atom tables. Since SE-
LECT can only select variables that appear in the GROUP
BY statement, the above template is for the case where ?x
appears in H. The case where ?x does not appear in H will
require a nested query. Our experience shows that already
running the non-nested query on a database of a few mil-
lion facts can easily take several minutes on an off-the-shelf
RDBMS. Hence, efficient SPARQL engines such as RDF-
3X [29] are an alternative option. In SPARQL 1.1, the pro-
jection query template is:

SELECT ?x
WHERE {
H.x1, H.xr, H.x2 .
B1.x1, B1.xr, B1.x2 .
. . .
Bn.x1, Bn.xr, Bn.x2 .
}
GROUP BY H.x1 H.xr H.x2
HAVING COUNT(*) ≥ k

Again, this is only for the case where ?x appears in H. RDF-
3X does not support aggregate functions in this way. Thus,
we would need extensive postprocessing of query results to
compute a projection query – already in the case where ?x
is in H.
In-Memory Database. We have implemented a vanilla
in-memory database for semantic KBs. Our implementa-
tion indexes the facts aggressively with one index for each
permutation of subject, relation, and object. Each index is
a map from the first item to a map from the second item
to a set of third items (e.g., a map from relations to a map
from subjects to a set of objects). This allows retrieving the
instantiations of a single atom in constant time. The exis-
tence of a query answer can be checked naively by selecting
the atom with fewest instantiations, running through all of
its instantiations, instantiating the remaining atoms accord-
ingly, and repeating this process recursively until we find an
instantiation of the query that appears in the KB. Select
queries are similar.
Projection Queries. Algorithm 2 shows how we answer
projection queries. The algorithm takes as input a selec-
tion variable ?x, a projection atom H = R(X,Y), remain-
ing atoms B1, ...Bn, a constant k, and a KB K. We first
check whether ?x appears in the projection atom. If that
is the case, we run through all instantiations of the projec-
tion atom, instantiate the query accordingly, and check for
existence. Each existing instantiation increases the counter
for the respective value of ?x. We return all values whose
counter exceeds k. If the selection variable does not appear
in the projection atom, we iterate through all instantiations
of the projection atom. We instantiate the query accord-
ingly, and fire a SELECT query for ?x. We increase the
counter for each value of ?x. We report all values whose
counter exceeds k.
Summary. We have identified projection queries as the cru-
cial type of queries for rule mining. Since standard database
systems and standard SPARQL systems provide no specifi-
cally tuned support for these queries, we have implemented

418

http://www.w3.org/TR/rdf-sparql-query/

a vanilla in-memory database, which has specific support for
projection queries. Our entire implementation is in Java.

Algorithm 2 Answering Projection Queries

function SELECT(?x, R(X,Y) ∧B1 ∧ ... ∧Bn, k, K)
map = ∅
if R ≡ ?x ∨ X ≡ ?x ∨ Y ≡ ?x then

for all instantiations r(x, y) of R(X,Y) ∈ K do
q = B1 ∧ ... ∧Bn

In q, replace R by r, X by x, Y by y
if exists instantiation q ∈ K then

map(value of ?x) + +
end if

end for
else

for all instantiations r(x, y) of R(X,Y) ∈ K do
q = B1 ∧ ... ∧Bn

In q, replace R by r, X by x, Y by y
for all x ∈ SELECT ?x FROM K WHERE q do

map(x) + +
end for

end for
end if
return {x : map(x) ≥ k}

end function

6. EXPERIMENTS
6.1 Overview
Experiments. We conducted 3 groups of experiments: In
the first group, we compare AMIE to two popular, state-
of-the-art systems that are publicly available, WARMR [11,
12] and ALEPH4. In the second group of experiments, we
compare the standard confidence to the novel PCA confi-
dence that we have introduced in this paper (Section 4). In
the third group of experiments, we run AMIE on different
datasets to show the applicability of the system.
Settings. By default, AMIE finds all rules whose head cov-
erage exceeds the default threshold of θ = 1%. AMIE ranks
the resulting rules by decreasing PCA confidence. There is
no need to deviate from this default configuration when a
user runs AMIE. There are no parameters to tune. All ex-
periments with AMIE on all datasets are run in this setting,
unless otherwise mentioned.

For some experiments, we want to compare AMIE’s run-
time with other systems. To have an equal basis, we make
AMIE simulate the metrics of the competitor systems. AMIE
can threshold on support, head coverage, confidence, and
PCA confidence, and she can rank by any of these. AMIE
can also count the support not on two variables, but on a sin-
gle variable. AMIE can also output non-closed rules. Since
this is just a choice of what to output, it does not influ-
ence runtime. All experiments with all systems are run on a
server with 48GB RAM and 8 CPUs. We always mine rules
without constants (i.e., without the instantiation operator),
unless otherwise mentioned.
Knowledge Bases. We run our experiments on different
KBs. In all cases, we removed the rdf:type relationship, be-
cause it inflates the size of the KBs. We are aware that
the rdf:type relationship can be very helpful for rule mining.
However, currently no approach (including ours) makes spe-
cific use of it. We plan to make use of it in future work. Fur-
thermore, we removed all facts with literals (numbers and

strings) from the KBs. Literal values (such as geographi-
cal coordinates) are shared by only very few entities, which
makes them less interesting for rule mining.
Evaluations. In all experiments, our goal is twofold: First,
we want to produce as many predictions as possible beyond
the current KB. Second, the percentage of correct predic-
tions shall be as large as possible. The particular challenge
is that we want to evaluate predictions that go beyond the
current KB. We are not interested in describing the exist-
ing data, but in generating new data. Therefore, we pro-
ceed as follows: We run the systems on an older dataset
(YAGO2 [16]). We generate all predictions, i.e., the head
atoms of the instantiated rules (see Section 3). We remove
all predictions that are in the old KB. Then we compare the
remaining predicted facts to the successor of that dataset
(YAGO2s [34]). A prediction is “correct” if it appears in the
newer KB. A prediction is “incorrect” if it has a highly func-
tional or highly inverse functional relation and contradicts
an existing fact in the newer KB, e.g., a different birth place.
For all other predictions, we manually validated the facts by
checking a sample of 30 of them against Wikipedia pages.
This classifies the remaining predictions as “correct” or “in-
correct”– except for a few cases where the fact is“unknown”,
such as the death place of a person that is still alive. The
ratio of correct predictions out of the correct and incorrect
predictions yields the precision of the rule.
Outlook. We note that with the project of predicting be-
yond current knowledge, we are entering a new, and very
risky area of research. We do not expect Horn rules to have
extraordinary precisions in the unknown region. Rules can
only yield hypotheses about possible facts.

6.2 AMIE vs. WARMR and ALEPH
In this section, we compare AMIE to WARMR and ALEPH.
For each system, we conduct 3 experiments: We first com-
pare the usability of the competitor system to AMIE. Then,
we compare their runtimes. Last, we compare their outputs.

6.2.1 AMIE vs. WARMR
Usability. WARMR is a system that unifies ILP and as-
sociation rule mining. Similar to APRIORI algorithms [4],
it performs a breadth-first search in order to find frequent
patterns. WARMR generates Datalog queries of the form
“?−A1, A2, ..., An”, where Ai are logical atoms.

To discover frequent patterns (as in association rule min-
ing), we need to have a notion of frequency. Given that
WARMR considers queries as patterns and that queries can
have variables, it is not immediately obvious what the fre-
quency of a given query is. Therefore, the user needs to
specify the predicate that is being counted by the system
(the key predicate). In the usual scenario of market basket
analysis, e.g., the system counts customer transactions. In
a scenario in which the database is a KB, one solution is to
count entities. Since the key predicate determines what is
counted, it is necessary that it is contained in all queries.
Therefore, we add a predicate entity(x), which we fill with
all entities of the KB. AMIE does not require such a choice.

For WARMR, the user needs to provide specific informa-
tion about which predicates can be added to a query, which
of their variables can be fresh, and which arguments of pred-
icates are allowed to be unified (type declarations). In con-
trast, AMIE requires none of these. AMIE simply takes as
input the KB in triple format.

419

WARMR is also able to mine rules with constants. The
user can define which predicates and arguments should be
instantiated with constants (we call this mode MODE1).
WARMR then checks all the constants appearing in the facts
of that specific predicate and argument and afterwards uses
them in the queries. MODE1 naturally entails an increase of
the branching factor in the search space and an explosion in
the number of candidates that need to be evaluated. Alter-
natively, WARMR allows the user to set a maximum num-
ber of constants to be used for each predicate and argument
(MODE2). Unfortunately, though, it does not provide a way
for the user to influence the selection of these constants. In
other words, there is no guarantee that the constants that
WARMR will use are the most promising ones.

WARMR produces rules as output. These rules are not
necessarily connected. For example, WARMR mines

isMarriedTo(B,C), ∧ isLeaderOf (A,D)
⇒ hasAcademicAdvisor(C,E)

This rule is not only nonsensical from a semantic perspec-
tive, but also redundant, because the second atom does not
influence the implication. Therefore, the user has to filter
out these rules from the output.

Thus, we conclude that the broader mission and the broader
applicability of WARMR entails that much more configura-
tion, acquaintance, and expert knowledge is needed to make
it mine Horn rules on semantic KBs.
Runtime. YAGO2 [16] contains around 940K facts about
470K entities. WARMR was not able to terminate on this
data in a time period of 1 day. Therefore, we created a
sample of YAGO2. Randomly selecting a number of facts
from the initial dataset could break the interesting links be-
tween the entities. Therefore, we randomly selected 10,000
seed entities and included their 3-hop neighborhood. This
yielded 14K entities and 47K facts. This sample contains
all available information in a radius of 3 hops around the
seed entities, but much less information about the entities
at the periphery of the subgraph. Therefore, we restricted
the values for the key predicate to the seed entities only.

Since the sample is much smaller than the original KB, we
lowered the support threshold to 5 entities. We ran AMIE
with these parameters on the sample. AMIE mined her rules
in 3.90 seconds. WARMR, in contrast, took 18 hours. We
also ran both systems allowing them to mine rules with con-
stants. AMIE completed the task in 1.53 minutes. WARMR
in MODE1 for all relations did not terminate in 3 days.
Therefore, we ran it also only for the relations diedIn, livesIn,
wasBornIn, for which it took 48h. We also ran WARMR in
MODE2. To have reasonable runtimes, we allowed WARMR
to find constants only for one predicate (diedIn). We also re-
stricted it to find only 20 constants. WARMR ran 19 hours.
Table 3 summarizes the runtime results. We conclude that
AMIE is better suited for large KBs than WARMR. This
is because WARMR is an ILP algorithm written in a logic
programming environment, which makes the evaluation of
all candidate queries inefficient.

Constants WARMR AMIE
no 18h 3.90s
yes (48h) / (19.3h) 1.53min

Table 3: Runtimes on YAGO2 Sample

Results. After filtering out non-connected rules, WARMR
mined 41 closed rules. AMIE, in contrast, mined 207 closed

rules, which included the ones mined by WARMR. We checked
back with the WARMR team and learned that for a given set
of atoms B1, ...Bn, WARMR will mine only one rule, picking
one of the atoms as head atom (e.g., B1 ∧ ...∧Bn−1 ⇒ Bn).
AMIE, in contrast, will mine one rule for each possible choice
of head atom (as long as the thresholds are met). In other
words, AMIE with the standard support and confidence
measures simulates WARMR, but mines more rules. Fur-
thermore, it runs orders of magnitude faster. Especially
for large datasets for which the user would have needed to
use complicated sampling schemes in order to use WARMR,
AMIE can be a very attractive alternative. Even for smaller
datasets with rules with constants, AMIE can provide results
while WARMR cannot. Moreover, AMIE comes with met-
rics that go beyond the standard confidence and the stan-
dard support. We will show later that these improve the
quality of the results.

6.2.2 AMIE vs. ALEPH
Usability. ALEPH can be run with different commands
that influence the search strategy. We chose the induce com-
mand, which runs fastest. For running ALEPH, the user
has to specify the target predicate for learning (the head
predicate of the rules). In the following, we ran ALEPH
successively with all predicates of the KB as targets. In ad-
dition, the user has to specify a series of type and mode
declarations (similar to WARMR), which will be used as a
language bias in order to restrict the search space. In addi-
tion, the user needs to provide ALEPH with files containing
the background knowledge and positive examples for the tar-
get predicate. In contrast, AMIE requires no such input. It
will run on a KB without any prespecified choices of predi-
cates.

KB Facts ALEPH AMIE
YAGO2 full 948k 4.96s to > 1 day 3.62min
YAGO2 Sample 47k 0.05s to > 1 day 5.41s

Table 4: Runtimes ALEPH vs. AMIE

Relations Runtime
isPoliticianOf, hasCapital, hasCurrency < 5min
dealsWith, hasOfficialLanguage, imports < 5min
isInterested, hasMusicalRole <19min
hasAcademicAdvisor, hasChild > 1 day
isMarriedTo, livesIn, worksAt, isLocatedIn > 1 day

Table 5: Runtimes of ALEPH on YAGO2

Relations Runtime
diedIn, directed, hasAcademicAdvisor < 2min
graduatedFrom, isPoliticianOf, playsFor < 2min
wasBornIn, worksAt, isLeaderOf < 2min
exports, livesIn, isCitizenOf < 1.4h
actedIn, produced, hasChild, isMarriedTo > 1 day

Table 6: Runtimes of ALEPH on YAGO2 Sample

Runtime. We ran AMIE and ALEPH on YAGO2 [16].
For ALEPH, we used the positive-only evaluation function
with Rsize = 50 and we considered only clauses that were
able to explain at least 2 positive examples, so that we will
not get grounded facts as rules in the output. For a fair
comparison, we also instructed AMIE to run with a support
threshold of 2 facts. AMIE terminated in 3.62 minutes, and
found rules for all relations. ALEPH ran for one head re-
lation at a time. For some relations (e.g.isPoliticianOf), it
terminated in a few seconds. For others, however, we had to

420

abort the system after 1 day without results (Tables 4 and
5). For each relation, ALEPH treats one positive example
at a time. Some examples need little processing time, others
block the system for hours. We could not figure out a way
to choose examples in such a way that ALEPH runs faster.
Hence, we used the sample of YAGO2 that we created for
WARMR. Again, runtimes varied widely between relations
(Table 6). Some relations ran in a few seconds, others did
not terminate in a day. The runtimes with constants are
similarly heterogenous, with at least 7 relations not termi-
nating in 1 day.
Results. We compared the output of ALEPH on the head
relations for which it terminated to the output of AMIE
on these head relations, on the sample dataset. ALEPH
mined 56 rules, while AMIE mined 335 rules. We order
the rules by decreasing score (ALEPH) and decreasing PCA
confidence (AMIE). Table 7 shows the number of predic-
tions, and their total precision as described in Section 6.1.
We show the aggregated values at the points where both
approaches have produced around 3K, 5K and 8K predic-
tions. AMIE’s PCA confidence succeeds in sorting the rules
roughly by descending precision, so that the initial rules have
an extraordinary precision compared to ALEPH’s. AMIE
needs more rules to produce the same number of predictions
as ALEPH (but she also mines more). We suspect that
ALEPH’s positives-only evaluation function manages to fil-
ter out overly general rules only to some extent. ALEPH
will mine, e.g, livesIn(A,C),isLocatedIn(C,B) ⇒ isPoliti-
cianOf (A,B). The problem is that ALEPH generates coun-
terexamples by randomly using valid constants for variables
A and B. This means that the probability of creating a
random example in which B is the place of residence of the
specific person A is very low.

System Top n Predictions Precision
ALEPH 7 2997 27%
AMIE 13 3180 66%
ALEPH 9 5031 26%
AMIE 29 5003 47%
ALEPH 17 8457 30%
AMIE 52 8686 45%

Table 7: Top Rules of ALEPH vs. AMIE

6.3 AMIE with Different Metrics
In this section, we compare the standard confidence mea-

sure to the PCA confidence measure. We ran AMIE with
the default head coverage threshold on the YAGO2 dataset.
It contains nearly 500K entities and 948K facts. We sort
the rules first by descending PCA confidence, and then by
descending standard confidence, and look at the top rules.
For each rule, we evaluated the predictions beyond YAGO2
as described in Section 6.1. Figure 8 uses aggregated predic-
tions and aggregated precision to illustrate the results. The
n-th dot from the left tells us the total number of predictions
and the total precision of these predictions, aggregated over
the first n rules. As we see, ranking the rules by standard
confidence is a very conservative approach: It identifies rules
with reasonable precision, but these do not produce many
predictions. Going down in the list of ranked rules, the rules
produce more predictions – but at lower precision. The top
30 rules produce 113K predictions at an aggregated preci-
sion of 32%. If we rank the rules by PCA confidence, in con-
trast, we quickly get large numbers of predictions. The top

10 rules already produce 135K predictions – at a precision
of 39%. The top 30 rules produce 3 times more predictions
than the top 30 rules by standard confidence – at compa-
rable precision. This is because the PCA confidence is less
conservative than the standard confidence.

0 50000 100000 150000 200000 250000 300000 350000 400000 450000
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Aggregated predictions (beyond the initial KB)

A
gg

re
ga

te
d

P
re

ci
si

o
n Std. Confidence (rules 1-30)

PCA Confidence (rules 1-30)

Std. Confidence (rules 31-46)

Figure 8: Std. Confidence vs. PCA Confidence

Discussion. The precision of the rules is in the range of
30%-40%. Thus, only a third of the predictions in the un-
known region will be correct. Still, even imperfect rules can
be useful: If, e.g., a human checks the facts before they
are added, then reducing the number of false predictions is
a great advantage. If games with a purpose are employed,
then the rules can help pre-select candidate facts. If multiple
sources are combined, then rules can contribute evidence. If
reasoning approaches are used, then rules can be taken into
consideration according to their estimated performance. Fi-
nally, the precision is better if standard confidence is used.
Predicting Precision. The confidence measures can serve
to estimate the actual precision of a rule. In Table 9, we rank
the mined rules by their precision and report the average ab-
solute error of the standard and PCA confidence weighted
by the number of predictions produced by the rules. We
can observe that, on average, the PCA confidence estimates
the precision of the rules better than the normal confidence.
Thus, reasoning approaches can use the PCA confidence as
a weight for the rule.

Top 20 rules Top 30 rules All rules
Confidence 0.76 0.63 0.33
PCA Confidence 0.32 0.29 0.29

Table 9: Average Absolute Error to Precision

We also note that our rules are insightful. Table 10 shows
some of the rules we mined. Being able to mine reasonable
rules on semantic KBs of this size is an achievement beyond
the current state of the art.

isCitizenOf (x, y)⇒ livesIn(x, y)
hasAdvisor(x, y)∧ graduatedFrom(x, z)⇒ worksAt(y, z)
wasBornIn(x, y)∧ isLocatedIn(y, z)⇒ isCitizenOf (x, z)
hasWonPrize(x,G. W. Leibniz)⇒ livesIn(x,Germany)

Table 10: Some Rules by AMIE

6.4 AMIE on Different Datasets
As a proof of concept, we ran AMIE on YAGO2 [16],

YAGO2 with constants, and DBpedia [5]. We chose an older
version of DBpedia (2.0), so that we can evaluate the out-
put to a newer version of DBpedia (3.8). Due to the large
number of relations in DBpedia 2.0, there is an enormous
number of rules to be found. We show the time taken to
mine rules with 2 atoms. We provide also the number of
predicted facts that are in the newer version of the KB but

421

not in the old one (hits). As Table 11 shows, AMIE can pro-
duce rules with or without constants in a reasonable time.

Dataset Entities Facts Runtime Rules Hits
YAGO2 470475 948044 3.62min 138 74K
YAGO2 const 470475 948044 17.76min 18886 159K
DBpedia 1376877 6704524 2.89min 6963 122K

Table 11: AMIE on Different Datasets

All rules and results are available at http://www.mpi-inf.

mpg.de/departments/ontologies/projects/amie/.

7. CONCLUSION
In this paper, we have presented an approach for mining

Horn rules on large RDF knowledge bases. We have intro-
duced a formal model for rule mining under the Open World
Assumption, a novel measure to simulate counter-examples,
and a scalable algorithm for the mining. In contrast to state-
of-the-art approaches, our system (AMIE) requires no input
other than the KB, and does not need configurations or pa-
rameter tuning. As our extensive experiments have shown,
AMIE runs on millions of facts in only a few minutes and
outperforms state-of-the-art approaches not only in terms of
runtime, but also in terms of the number and quality of the
output rules. Our confidence measure can reasonably pre-
dict the precision of the rules. In our future work, we plan
to consider also the T-Box of the KB in order to produce
more precise rules. We also aim to explore the synergies
when several rules predict the same fact, and extend the set
of rules beyond Horn rules, so that even more complex facts
and hidden knowledge can be predicted.

8. REFERENCES
[1] Z. Abedjan, J. Lorey, and F. Naumann. Reconciling

ontologies and the web of data. In CIKM, 2012.

[2] H. Adé, L. Raedt, and M. Bruynooghe. Declarative bias for
specific-to-general ilp systems. Machine Learning, 20, 1995.

[3] R. Agrawal, T. Imieliński, and A. Swami. Mining
association rules between sets of items in large databases.
In SIGMOD, 1993.

[4] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I.
Verkamo. Fast discovery of association rules. In Advances
in knowledge discovery and data mining. 1996.

[5] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak,
and Z. G. Ives. DBpedia: A nucleus for a Web of open
data. In ISWC, 2007.

[6] Y. Chi, R. R. Muntz, S. Nijssen, and J. N. Kok. Frequent
Subtree Mining - An Overview. Fundam. Inf., 66(1-2),
2004.

[7] P. Cimiano, A. Hotho, and S. Staab. Comparing
Conceptual, Divisive and Agglomerative Clustering for
Learning Taxonomies from Text. In ECAI, 2004.

[8] C. d’Amato, V. Bryl, and L. Serafini. Data-driven logical
reasoning. In URSW, 2012.

[9] C. d’Amato, N. Fanizzi, and F. Esposito. Inductive learning
for the Semantic Web: What does it buy? Semant. web,
1(1,2), Apr. 2010.

[10] J. David, F. Guillet, and H. Briand. Association Rule
Ontology Matching Approach. Int. J. Semantic Web Inf.
Syst., 3(2), 2007.

[11] L. Dehaspe and H. Toironen. Discovery of relational
association rules. In Relational Data Mining.
Springer-Verlag New York, Inc., 2000.

[12] L. Dehaspe and H. Toivonen. Discovery of frequent
DATALOG patterns. Data Min. Knowl. Discov., 3(1), Mar.
1999.

[13] B. Goethals and J. Van den Bussche. Relational Association
Rules: Getting WARMER. In Pattern Detection and
Discovery, volume 2447. Springer Berlin / Heidelberg, 2002.

[14] G. A. Grimnes, P. Edwards, and A. D. Preece. Learning
Meta-descriptions of the FOAF Network. In ISWC, 2004.

[15] S. Hellmann, J. Lehmann, and S. Auer. Learning of OWL
Class Descriptions on Very Large Knowledge Bases. Int. J.
Semantic Web Inf. Syst., 5(2), 2009.

[16] J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum.
YAGO2: a spatially and temporally enhanced knowledge
base from Wikipedia. Artificial Intelligence Journal, 2013.

[17] J. Jozefowska, A. Lawrynowicz, and T. Lukaszewski. The
role of semantics in mining frequent patterns from
knowledge bases in description logics with rules. Theory
Pract. Log. Program., 10(3), 2010.

[18] M. Kuramochi and G. Karypis. Frequent Subgraph
Discovery. In ICDM. IEEE Computer Society, 2001.

[19] J. Lehmann. DL-Learner: Learning Concepts in
Description Logics. Journal of Machine Learning Research
(JMLR), 10, 2009.

[20] F. A. Lisi. Building rules on top of ontologies for the
semantic web with inductive logic programming. TPLP,
8(3):271–300, 2008.

[21] A. Maedche and V. Zacharias. Clustering Ontology-Based
Metadata in the Semantic Web. In PKDD, 2002.

[22] T. Mamer, C. Bryant, and J. McCall. L-modified ilp
evaluation functions for positive-only biological grammar
learning. In F. Zelezny and N. Lavrac, editors, Inductive
logic programming, number 5194 in Lecture notes in
artificial intelligence, pages 176–191. Springer-Verlag,
Berlin / Heidelberg, Germany, 2008. Paper originally
presented at the 18th International Conference, ILP 2008
Prague, Czech Republic, September 10-12 2008.

[23] C. Matuszek, J. Cabral, M. Witbrock, and J. Deoliveira.
An introduction to the syntax and content of Cyc. In AAAI
Spring Symposium, 2006.

[24] D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder. An
Environment for Merging and Testing Large Ontologies. In
KR, 2000.

[25] S. Muggleton. Inverse entailment and progol. New
Generation Comput., 13(3&4), 1995.

[26] S. Muggleton. Learning from positive data. In ILP.
Springer-Verlag, 1997.

[27] N. Nakashole, M. Sozio, F. Suchanek, and M. Theobald.
Query-time reasoning in uncertain rdf knowledge bases
with soft and hard rules. In Workshop on Very Large Data
Search (VLDS) at VLDB, 2012.

[28] V. Nebot and R. Berlanga. Finding association rules in
semantic web data. Knowl.-Based Syst., 25(1), 2012.

[29] T. Neumann and G. Weikum. RDF-3X: a RISC-style
engine for RDF. Proc. VLDB Endow., 1(1), Aug. 2008.

[30] N. F. Noy and M. A. Musen. PROMPT: Algorithm and
Tool for Automated Ontology Merging and Alignment. In
AAAI/IAAI. AAAI Press, 2000.

[31] M. Richardson and P. Domingos. Markov logic networks.
Machine Learning, 62(1-2), 2006.

[32] S. Schoenmackers, O. Etzioni, D. S. Weld, and J. Davis.
Learning first-order Horn clauses from web text. In
EMNLP, 2010.

[33] F. M. Suchanek, S. Abiteboul, and P. Senellart. PARIS:
Probabilistic Alignment of Relations, Instances, and
Schema. PVLDB, 5(3), 2011.

[34] F. M. Suchanek, J. Hoffart, E. Kuzey, and
E. Lewis-Kelham. YAGO2s: Modular High-Quality
Information Extraction. In German Database Symposium
(BTW), 2013.

[35] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core
of semantic knowledge. In WWW, 2007.

[36] P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the right
interestingness measure for association patterns. In KDD,
2002.

[37] J. Völker and M. Niepert. Statistical schema induction. In
ESWC, 2011.

422

http://www.mpi-inf.mpg.de/departments/ontologies/projects/amie/
http://www.mpi-inf.mpg.de/departments/ontologies/projects/amie/

	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Mining Model
	5 AMIE
	5.1 Algorithm
	5.2 Implementation

	6 Experiments
	6.1 Overview
	6.2 AMIE vs. WARMR and ALEPH
	6.2.1 AMIE vs. WARMR
	6.2.2 AMIE vs. ALEPH

	6.3 AMIE with Different Metrics
	6.4 AMIE on Different Datasets

	7 Conclusion
	8 References

